Preparation, X-ray structure and propylaminolysis of 7,7-dichloro-5,7-dihydro-thieno[3,4-b]pyridin-5-one Theodorus van Es^a, Benjamin Staskun^{b,c*} and Manuel A. Fernandes^b

^aDepartment of Biochemistry and Microbiology, Cook College, Rutgers, The State University of New Jersey, 08903-0231, USA ^bSchool of Chemistry, University of the Witwatersrand, P.O.Wits, 2050, South Africa

^cHonorary Associate, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia

Refluxing 2-methylpyridine-3-carboxylic acid with thionyl chloride for 6–7 h gave (~50%) title compound dichlorothienolactone **2** as was confirmed by a X-ray structure analysis. The propylaminolysis of 2 provides a new and convenient access to highly functionalised pyrrolo[3,4-*b*]pyridine derivatives.

Keywords: 7,7-dichloro-5,7-dihydrothieno[3,4-*b*]pyridin-5-one, X-ray structure, 3,3-dichloro-4-ethylthieno[3,4-*b*]quinoline-1, 9-dione, derivatives, reaction mechanisms

The alkylaminolysis of 3,3,9-trichlorothieno[3,4-b]quinolin-1-one 1 is a convenient new methodology for accessing highly functionalised pyrrolo[3,4-b]quinoline derivatives.¹ Here we describe the preparation and structure of a hitherto undocumented pyridine analogue of 1, namely, title compound 2, and the outcomes stemming from its propylaminolysis which offers an alternate and convenient access to a variety of functionalised pyrrolo[3,4-b]pyridine derivatives. Of the 10 isomeric methylpyridinecarboxylic aãds, six cannot be converted by thionyl chloride to a corresponding dichlorothiolactone derivative owing to structural considerations. To date, only 4-methylpyridine-3-carboxylic aãd has provided such a compound, namely 3^2 , while from 2,6-dimethyl-4-(3-thieny)pyridine-3,5-dicarboxylicaãd was obtained the dichlorothiolactone product $5.^3$ The product(s) generally isolated from the various methylpyridinecarboxylic aãds has/(have) been either the appropriate methylpyridinecarboxylic aad chloride⁴ and/or other chlorinated material.^{5,6} There is, however, a dearth of relevant follow-up research in this area.

Here, we show that refluxing (79°C) 2-methylpyridine-3-carboxylic aãd with (excess of) SOCl₂ affords title dichlorothiolactone derivative **2**, the yield increasing to ~56% after 6 h, *via* initial production of 2-methylpyridine-3carboxylic aãd chloride **4** which transforms during heating with the reagent to end-product **2**. It is noteworthy that little if any change is effected on **4** at 50°C for 5 h⁴ or at 60°C for 3.5 h. Structure **2** was unambiguously established from X-ray crystallographic analysis (Fig.1).

Compound 2 when treated with propylamine (as representative amine) provided different products, the nature and yields of which were determined by the reaction conditions: Thus: (i) stirring 2 with PrNH₂ (in slight molar excess) in dioxan solution at 0°C for a relatively short time (~20 min), gave (67%) N-propyl-2-[(propylamino)thioxomethyl]pyridine-3-carboxamide 6 (Scheme 1), while (ii) stirring 2 with neat propylamine (in large molar excess) at room temperature for 12 h provided (68%) 6-propyl-6,7-dihydro-7-(propylimino)pyrrolo[3,4-b]pyridin-5-one 7 as end-product. In subsequent transformations: (i) aãd-catalysed cyclisation of 6 gave 6-propyl-6,7-dihydro-7-thioxopyrrolo[3,4-b]pyridin-5-one 8, (ii) propylamine converted compounds 6 and 8 each to end-product 7, and (iii) aãd hydrolysis of 7 gave (85%) 6-propyl-6,7-dihydropyrrolo[3,4-b]pyridine-5,7-dione 9. Possible reaction transformations and sequences giving rise to the aforementioned transformations are outlined in Scheme 2. The known⁷ thieno[3,4-b] pyridine-5,7-dione 10 was isolated from the mother liquor of crystallisation of title compound 2.

Fig.1 Ortep diagram (50% ellipsoids) for **2**, showing the labelling of the non-hydrogen atoms.

Mechanistic considerations

We currently assume that dichlorothiolactone **2** forms *via* mechanistic events similar to those proposed² for dichlorothiolactone **3** and likewise involve the production and intramolecular cyclisation of an appropriate thioacyl chloride intermediate **11** (from 2-methylpyridine-3-carbonyl chloride **4**, Scheme 3A). An additional and cruãal factor in the reactions of both the 2- and 4-methylpyridine-3-carboxylic aãds with SOCl₂ in forming **2** and **3**, respectively, may be considered, *viz.*, a tautomerism in the initially formed aãd chloride, corresponding to the enolisation⁸ in 3-phenylpropanoyl chloride, thereby faãlitating the addition of SOCl₂ to a methylene double bond⁸ and the production of a thioacyl intermediate (Scheme 3A).

Although the Wenkert² mechanism shows no role for the pyridine N, an imine-enamine tautomerism also may be envisaged to complement/replace the aforementioned one (Scheme 3B). However, this possibility is unlikely in the instance of 1-ethyl-2-methyl-4-oxoquinoline-3-carboxylic aãd **12** which with SOCl₂ yields the 3,3-dichlorothieno[3,4-*b*] quinoline derivative **17** (Scheme 3B) at room temp.⁹ It is noteworthy that **17** forms more readily than does **2**, on account perhaps of more tautomeric possibilities being available in carboxylic aãd chloride **13**.

Consideration of the above suggested the following possibilities: (i) were 2-methyl-3-nitrobenzoyl chloride to exhibit the requisite tautomerism(s), its reaction with SOCl₂ might result in the novel dichlorothiolactone derivative **19** (Scheme 3C). (ii) Imidoyl chloride **20** bears a close structural and chemical reactivity relationship to aād chloride **13**, and in reaction with SOCl₂ might provide the unusual 3,3-dichloro-1-phenylimino-thieno[3,4-*b*]quinoline derivative **18** (Scheme 3B).

^{*} Correspondent. E-mail: benmina@optusnet.com.au

Scheme 1

The experimental outcomes were as follows: (i) Refluxing (79°C) a mixture of 2-methyl-3-nitrobenzoic aãd, SOCl₂ and pyridine catalyst (the latter to promote⁸ enolisation/ tautomerism in the antiãpated aãd chloride) for up to 65 h merely furnished (>90%) 2-methyl-3-nitrobenzoyl chloride, indicative perhaps of the absence of the requisite tautomerism(s) in this particular aãd chloride. (ii) 1-Ethyl-1,4-dihydro-2-methyl-4-oxo-*N*-phenylquinoline-3-carboxamide **14** was selected for *in situ* conversion in SOCl₂ to the representative imidoyl chloride **20** and was prepared as follows: Aãd **12** was reacted with 1,1¹-carbonyldiimidazole¹⁰ in DMF to form acylimidazole **21**. Heating (~120°C) the latter with aniline provided anilide **14** [in comparison to forming the *N*-methyl carboxamide **15** from **21** and (the more basic) methylamine at room temperature].

It was found that acylimidazole **21** itself reacted with SOCl₂ to give dichlorothiolactone **17** at room temperature, and trichlorothiolactone **1** at reflux temperature, the outcomes presumably stemming from initial production of aãd chloride **13** followed on by the Wenkert² events (Scheme 3). In support, aãd chloride **13** was formed when hydrogen chloride was bubbled into a dioxan solution of acylimidazole **21** at room temperature. A similar explanation accounts also for the production of trichlorothiolactone 1 on refluxing methyl ester **16** with SOCl₂

Contrary to expectations, anilide 14 on heating (79°C) with SOCl₂ for 2.5 h furnished 9-chloro-2-phenylpyrrolo[3,4-*b*] quinoline-1,3-dione 22 (53%) as major product. The MS of the 22 contained a minor peak at m/z 324 attributable to a proposed thioxo intermediate 23 (Scheme 4). With the knowledge that dichlorothienolactone 17 will form prior to trichlorothienolactone 1,⁹ and that the MS of the (the slightly impure) 22 contained a minor peak at m/z 324 attributable to a (proposed) thioxo intermediate 23 a tentative sequence of

Scheme 3

events leading to **22** is outlined in Scheme 4, but details of this reaction remain to be clarified.

In summary, the recently developed aminolysis methodology¹ with 2-methylquinoline-3-carboxylic aãds has been extended to a pyridine analogue *viz.*, 2-methylpyridine-3-carboxylic aãd to now provide an alternative and convenient access to highly functionalised thieno- and pyrrolo[3,4-*b*] pyridine derivatives suitable for further synthetic procedures and biological testing.

Scheme 4

Experimental

General procedure

Melting points were recorded on a hot-stage microscope apparatus and are uncorrected. TLC was performed on aluminium-backed plates, precoated with 0.25 mm silica gel. Column chromatography was carried out on silica gel. HPLC solvent generally used to elute: hexane: isopropyl alcohol; 450:50. ¹H NMR spectra were determined in CDCl₃ using a Bruker DRX (399.900 MHz specrometer. *J* values are in Hz. High-resolution mass spectra were recorded on a VG 70 SEQ mass spectrometer. Extracts were dried over anhydrous sodium sulfate.

Several of the compounds formed in the propylaminolysis reaction(s) were very similar by TLC while analytical HPLC showed a number of compounds to have similar retention times. Therefore several of the compounds were difficult to separate cleanly by column (silica gel) chromatography. Moreover, several of the products such as thioamide **6** and thioxo derivative **8** reacted further with propylamine (and at different rates). Accordingly, in order to isolate a speafic product, reaction conditions such as time, temperature and concentration, had to be manipulated to afford the desired compound in satisfactory yield. We have not attempted to optimise yields in every instance.

7,7-Dichloro-5,7-dihydrothieno[3,4-b]pyridin-5-one **2**: A mixture of 2-methylpyridine-3-carboxylic aãd (548 mg, 4.0 mmol) and thionyl chloride (5 ml) was refluxed (79°C) for various periods up to 24 h with TLC monitoring. The reaction mixture from 6.5 h estimated as containing an optimum yield of **2** was evaporated and the residue kept in a a vacuum dessicator (over solid KOH) to ensure the removal of all the SOCl₂. The crude material (~750 mg) was applied to a silica gel column using 15% acetone/benzene to obtain title compound **2** (412 mg, 1.87 mmol, 47%). Crystals (from EtOAc/hexane), m.p. 154–155°C. $\delta_{\rm H}$ 7.60 (1H, m), 8.15 (1H, m), 9.06 (1H, m). Found: C,37.99; H, 1.50; N,6.17. C₇H₃Cl₂NOS requires C, 38.20; H, 1.37; N, 6.36%. Also isolated from the column was 80 mg of thiolactone **10** (vide infra).

2-Methylpyridine-3-carbonyl chloride 4: Keeping a mixture of 2-methylpyridine-3-carboxylic aãd (140 mg, 1.02 mmol) and SOCl₂ (5 ml) at 0°C, at room temperature up to 24 h, or even at 60°C for 5 h, followed by evaporation, gave in each instance, a residue of the known⁴ title compound 4 as evidenced by treatment with methanol to form the methyl ester, identical (TLC) with authentic (commerãal) ester. Refluxing (79°C) 4 with SOCl₂ for an extended time provided dichlorothiolactone 2 (vide supra).

N-Propyl-2-[(propylamino)thioxomethyl]pyridine-3-carboxamide **6:** The reaction of **2** in neat propylamine is comparatively fast and results in mixtures of **6**, **7** and **8** and, eventually in end-product, **7** (*vide infra*). To prepare title compound **6** the reaction rate was reduced by conducting the propylaminolysis in 10% w/w propylamine in dioxan, at 0°C: 1.20 g PrNH₂/dioxan solution (120 mg PrNH₂, 2.0 mmol) cooled in ice was slowly added with stirring to dichlorothiolactone **2** (100 mg, 0.45 mmol). The reaction progress was monitored by TLC (solvent), and after 20 min (when the yield of **6** was estimated as optimum) the reaction was extracted with CHCl₃/H₂O. Evaporation of the CHCl₃ under reduced pressure and temperature gave crude title compound **6** (120 mg.) which was stirred with hexane at room temperature. The comparatively pure title product was filtered off (80 mg, 67%) and crystallised from EtOAc/hexane; m.p. 69–70°C. $\delta_{\rm H}$ 0.94 (3H, t *J* = 7.4), 1.05 (3H, t, *J* = 7.4), 1.65 (2H, m), 1.76 (2H, m), 3.35 (2H, m), 3.75 (2H,m), 7.53 (1H,m), 8.0–8.2 (~3H, m), 8.6 (1H, m). Found: C,58.43; H,7.12; N, 15.42; *m/z* 265 (M⁺, 20%), 206 [M-59, 100%), corresponding (to loss of propylamine) to thioxo derivative **8**]. C₁₃H₁₉N₃OS requires C, 58.84; H, 7.22; N, 15.84%; M, 265. Aãd-sensative **6** underwent cyclisation to thiolactone **8** in the course of chromatography on (aãdic) silica gel (*vide infra*).

6-Propyl-5, 7-dihydro-7-(propylimino)pyrrolo[3,4-b]pyridin-5-one 7: Dichloro compound 2 (313 mg, 1.42 mmol) was slowly added (over ~ 10 min) with stirring to neat propylamine (5 ml) cooled in ice. The solution was kept at room temperature overnight and treated with CHCl₃/H₂O. Evaporation of the CHCl₃ extract gave (crude) title compound 7 (320 mg), which were washed with hexane (cooled to – 80°C) to provide crystals (100 mg) of 7, m.p. 43–44°C; concentration of the mother liquor and chilling to ~80°C afforded a further 125 mg of product 7 (total yield, 225 mg, 69%). $\delta_{\rm H}$ 0.94 (3H,t, *J* = 7.5), 1.01 (3H, t, *J* = 7.4), 1.71 (2H, m), 1.78 (2H, m), 3.81 (2H,t, *J* = 7.3), 4.43 (2H, t, *J* = 7.0), 7.46 (1H, m, 3-H), 8.14 (1H, m, 2-H), 8.85 (1H,m, 4-H). Found: C, 67.33; H, 7.35; N, 17.81; *m/z* 231, M⁺, 100%; 216, M-15, 35%; 202, M-29, 40%, 174, M-57, 50%. C₁₃H₁₇N₃O requires C, 67.51; H, 7.41; N, 18.17%; M, 231.

6-Propyl-5,7-dihydro-7-thioxopyrrolo[3,4-b]pyridin-5-one **8:** (a) A mixture of amide **6** (43 mg, 0.16 mmol) and 2 ml glaãal HOAc was warmed at 50°C for 30 min. The solution was diluted with ice-H₂O and the red (crude **8**) solid which had separated (30 mg, 90%) was collected by filtration and crystallised from EtOAc (m.p.103–104°C). $\delta_{\rm H}$ 0.99 (3H, t, J = 7.4), 1.79 (2H, sextet), 4.09 (2H, t, J = 7.4), 7.62 (1H, m, 3-H), 8.13 (1H, m, 2-H), 8.96 (1H, m, 4-H). Found: C, 57.86; H,4.76; N, 13.21%; *m/z*, 206(M⁺, 100%), 191 (M-15, 20%),178 (M-28, 35%). C₁₀H₁₀N₂OS requires C,58.23; H, 4.89; N, 13.58%; M, 206.

(b) Dichlorolactone **2** (550 mg, 2.49 mmol) was added over 5 min in portions to ice-cold stirred propylamine (5 ml) and the reaction continued for a further 15 min. following addition of CHCl₃/H₂O, the CHCl₃ extract was dried and evaporated to a residue (690 mg) which was applied to a column (silica gel, 15% acetone in benzene) to give imine 7 (94 mg, 16%), crystals from hexane, m.p. 43–44°C) and title compound **8** (244 mg, 48%), crystals from EtOAc/hexane, m.p. 103–104°C). Also eluted (74 mg, 11%) was amide **6**.

Preparation of 6-Propyl-5,7-dihydropyrrolo[3,4-b]pyridine-5,7dione **9:** A solution of propylimino compound **7** (156 mg, 0.68 mmol) in (1:1) glaãal HOAc/H₂O (3 ml) was kept overnight at room temperature after which the reaction was allowed to evaporate. The residue was treated with H₂O and the crude title product **9** was collected by filtration (110 mg, 85%). Crystals from EtOAc/hexane, m.p. 100–101°C. $\delta_{\rm H}$ 0.96 (3H, t, J = 7.4), 1.73 (2H, sextet, J = 7.4), 3.72 (2H, t, J = 7.4), 7.61 (1H, m, 3-H), 8.16 (1H, m, 2-H), 8.96 (1H, m, 4-H). Found: C, 62.90; H, 5.34; N, 14.45; m/z 190 (M⁺, 60%, 161 (M-29, 100%). C₁₀H₁₀N₂O₂ requires C, 63.15; H, 5.30; N, 14.73%; M, 190.

Thieno[3,4-b]pyridine-5,7-dione 10: The mother liquor of crystallised 2 (vide supra) was evaporated and the residue applied to a silica gel column (15% acetone in benzene). Appropriate fractions were combined and evaporated to obtain 10. Crystals (from EtOAc/hexane); m.p. 84–86°C (lit⁷. m.p. 91°C). Found: m/z 165, (M⁺, 100%, 105, 90%, 77, 90%). C₇H₃NO₂S requires M, 165.

Effect of SOCl₂ on 2-Methyl-3-nitrobenzoic aãd: A mixture of the (commerãal) aãd (0.50 g, 2.76 mmol), SOCl₂ (5 ml) and pyridine catalyst (several drops) was refluxed for ~65 h [with TLC (benzene) monitoring]. Exhaustive evaporation of solvent (*under* vacuo) yielded a residue (450 mg, TLC benzene; one spot) of (crude) 2-methyl-3-nitro-benzoyl chloride, m.p. 59–60°C. Lassaigne sodium fusion: positive for Cl, negative for S. Treatment of the product with H₂O in dioxan gave crystals of (crude) title aãd, m.p. 179–181°C., mixture m.p. with substrate aãd unchanged). Warming the aãd chloride product with methanol formed the methyl ester; crystals (from EtOAc/hexane), m.p. 64°C. In each instance the product m.p. corresponded to the literature value.

1-Ethyl-1,4-dihydro-2-methyl-4-oxoquinolin-3-oyl-N-imidazole: **21:** A stirred mixture of aãd **12**¹¹ (909 mg, 3.94 mmol), 1,1¹carbonyldiimidazole¹⁰ (910 mg, 5.48 mmol) and DMF (5 ml) was heated at 100°C for 2 h and afterwards chilled in ice. The preãpitate was collected, washed with EtOAc and then with Et₂O, and dried in vacuo to provide crude acylimidazole derivative **21** (960 mg, 87%). Crystals (from CHCl₃/EtOAc), mp 236°C. $\delta_{\rm H}$ 1.60 (3H, t, J = 7.2), 2.68 (3H, s), 4.43 (2H, q, J = 7.2), 7.38 (1H, m), 7.54 (1H, m), 7.65 (1H, m), 7.78 (1H, m), 7.83 (1H, m), 8.39 (1H, m), 8.84 (1H, m). Found: C, 68.84; H, 5.42; N, 14.86. $C_{16}H_{15}N_3O_2$ requires: C, 68.31; H, 5.37; N, 14.94.

1-Ethyl-1,4-dihydro-2,N-dimethyl-4-oxoquinoline-3-carboxamide **15:** A mixture of acylimidazole **21** (500 mg, 1.78 mmol) and methylamine gas (1.0 g, ~ 30 mmol) dissolved in DMF (6 ml) was stirred at room temperature for 3 h. The resulting reaction was chilled in ice, and the solid was collected and washed with EtOAc to give the crude title amide **15** (390 mg, 90%). Crystals (from EtOAc), m.p. 220°C. Found: C, 68.69; H, 6.57; N, 11.37. $C_{14}H_{16}N_2O_2$ requires: C, 68.79; H, 6.60; N, 11.47%.

1-Ethyl-1, 4-dihydro-2-methyl-4-oxo-N-phenylquinoline-3-carboxamide **14:** A mixture of acylimidazole **21** (319 mg, 1.14 mmol), aniline (197 mg, 2.1 mmol) and pyridine catalyst (1.5 ml) was heated (~120°C) for 24 h. The reaction was evaporated under reduced pressure and the residue (190 mg, 54%) of crude title amide **14** was crystallised from methanol; m.p. 214–215°C. Found: C,74.27; H, 6.00; N, 9.14. $C_{19}H_{18}N_2O_2$ requires C, 74.49; H, 5.92; N, 9.14%.

3,3-Dichloro-4-ethylthieno[3,4-b]quinoline-1,9-dione 17 from SOCl₂ acting on acylimidazole 21: A mixture of 21 (325 mg, 1.16 mmol) and SOCl₂ (5 ml) was stirred at room temperature with TLC monitoring which revealed a slow transformation of 21 to dichlorothiolactone 17 accompanied by increasing darkening of the reaction. After 4 days the solution was evaporated and the residue was washed with aqueous NaHCO₃, and extracted into CHCl₃. Evaporation gave a dark, tarry solid (230 mg) which was chromatographed (silica gel, 20% EtOAc/CHCl₃) to obtain 17 (150 mg, 48%), m.p. 187–189°C, identified by comparison (mixture m.p., TLC and HPLC) with authentic⁹ compound 17.

3,3,9-Trichlorothieno[3,4-b]quinolin-1-one 1 from SOCl₂ acting on acylimidazole 21 and on methyl ester 16: A mixture of 21 (330 mg, 1.17 mmol) and SOCl₂ (5 ml) was refluxed for 1.5 h. Evaporation gave a residue which was extracted into CHCl₃. Removal of solvent gave a dark gummy material which was extracted with boiling EtOAc to give crystals of title compound 1 (200 mg, 56%), m.p. 200–202°C (from dioxan), identified by mixture m.p., TLC and HPLC comparison with authentic⁹ 1: Refluxing a mixture of methyl ester 16 (150 mg, 0.61 mmol) and SOCl₂ (5 ml) for 1.5 h also provided thiolactone 1 (30 mg, 16%), m.p. 198–201°C, likewise identified

Action of hydrogen chloride on acylimidazole **21:** Acylimidazole **21** (51 mg, 0.18 mmol) was added with stirring to a dioxan solution [10 ml, containing ~10% (by weight) hydrogen chloride gas]. Monitoring of the reaction (at room temperature) by TLC (30% acetone and 5% Et₃N in benzene) showed little remaining substrate **21** after ~10 min. The sticky product which had separated was filtered (45 mg) and treated with aqueous NaHCO₃ to provide aãd **12** (25 mg, 60%) and some unchanged acylimidazole **21**.

9-Chloro-2-phenylpyrrolo[3,4-b]quinoline-1,3-dione **22:** A mixture of *N*-phenylquinoline-3-carboxamide **14** (116 mg, 0.38 mmol) and SOCl₂ (5 ml) was refluxed for 2.5 h. Evaporation gave a residue which was chromatographed (silica gel, 10% acetone in CHCl₃) to give (62 mg, 53%) product **22** containing minor impurities. Crystals (from EtOAc), m.p.242–244°C. $\delta_{\rm H}$ 7.45–7.60 (5H, m), 7.91 (1H, m), 8.03 (1H, m), 8.48 (1H, m), 8.55 (1H, m). Found: *m/z* 308 (100%, Cl isotopic ratio, ~3:1), 324 (~5%,Cl isotopic ratio: *ca* 3:1). M, 308.03587. C₁₇H₉ClN₂O₂ requires: M, 308.03525.

X-ray crystallographic analysis for **2**

Intensity data were collected on a Bruker SMART IK CCD area detector diffractometer with graphite monochromatated Mo K α radiation (50kV, 30 mA). The collection method involved ω -scans

of width 0.3°. Data reduction was carried out using the program SAINT + (Bruker, 1999).¹² The crystal structure was solved by direct methods using *SHELXTL* (Bruker, 1999).¹³ Diagrams and publication material were generated using *SHELXTL* and *PLATON* +(Spek, 2003).¹⁴

Crystal data for 2.

EF C₇H₃Cl₂NOS, FW 220.06, crystal system: orthorhombic, space group: Pnma, unit cell dimensions: a = 11.407(2)Å, b = 6.861(5)Å, c = 10.382(2)Å, volume: 812.5(6)Å³, Z = 4, D_{calc} = 1.799 Mg m⁻³, $\mu = 0.996$ mm⁻¹, T = 293(2)K, F(000) = 440, crystal size = 0.40 × 0.27×0.22 mm, unique reflections 1062[R(int) = 0.0226]. The final refinement converged to R₁ = 0.0298 and wR₂ = 0.0726 for observed data and R₁ = 0.0341, wr₂ = 0.756 for all data with residuals (max. peak/hole) of 0.486 and -0.348 eÅ⁻³. Full crystallographic details for structure **2** have been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 640183). Any request to the CCDC for this material should quote the full literature ãtation.

The authors thank Dr Isla Hains for the acquisition of the ¹H NMR spectra.

Received 15 March 2007; accepted 12 June 2007 Paper 07/4595 doi: 10.3184/030823407X225392

References

- T. van Es, B. Staskun and S. van Vuuren, S. Afr. J. Chem., 2005, 58, 74, and refs therein.
- 2 E. Wenkert, F. Haglid and S.L. Mueller, J. Org. Chem., 1969, 34, 247.
- 3 F. Heude, M. Cugnon de Sevricourt, S. Rault and M. Robba, *Heterocycles*, 1987, 26, 1535.
- 4 See for example: N. Douja, M. Besson, P. Gallezot and C. Pinel, J. Mol. Catalysis A: Chemical, 2002, 186, 145.
- 5 H. Vörbruggen, Advances in Heterocyclic Chemistry, Ed. A.R. Katritzky, 1990, 9,129. Academic Press, San Diego.
- 6 More recently, K. Nagarajan, P.J. Rodrigues, M. Nethaji, M. Vohler and W. von Philipsborn, *Helv. Chimica. Acta.*, 1994, 77, 155, claim that 4-methylpyridine-3-carboxylic aãd and SOCl₂ stirred at 0°C for 6 h and then kept at 30°C for 14 h followed by filtration of the mixture and evaporation of the filtrate at 90°C in vacuo gave (>50%) crude 4-chloromethypyridine-3-carboxylic aãd chloride; no mention is made of thiolactone 3².
- 7 A. Bigotto, V. Galasso, F.P. Colonna, G. Distefano, G.C. Pappalardo and G. Scarlata, J. Chem. Soc., Perkin Trans.2., 1978, 1194.
- 8 A.J. Krubsack and T. Higa, Tetrahedron Lett., 1968, 49, 5149
- 9 D.C. Levendis, J. Moffit, B. Staskun and T. van Es, J. Chem. Research(S), 1999, 614.
- 10 M.P. Wentland, R.B. Perni, P.H. Dorff, R.P. Brundage, M.J. Castaldi, T.R. Bailey, P.M. Carabateas, E.R. Bacon, D.C. Young, M.G. Woods, D. Rosi, M.L. Drozd, R.K. Kullnig and F.J. Dutko, *J. Med. Chem.*, 1993, 36, 1580.
- 11 T. van Es and B. Staskun, S. Afr. J. Chem., 1998, 51, 121.
- 12 Bruker (1999). SAINT + . Version 6.02 (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.
- 13 Bruker (1999). SHELXTL. Version 5.1. (includes XS, XI, XP, XSHELL) Bruker AXS Inc., Madison, Wisconsin, USA.
- 14 A.L. Spek, J. Appl. Cryst. 2003, 36, 7.